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Abstract
In this article some results regarding film growth considered as a stochastic
process of dots are reviewed. The central concept of the theory described
in the initial part of the article is the evaluation of the exclusion probability,
i.e. the probability that no dots are found in a given region of the surface. This
is reviewed to a certain extent for both correlated and uncorrelated dots and,
moreover, for distinguishable classes of dots. This theoretical framework allows
one to tackle the nucleation and growth of films ruled by diffusion of adspecies.
In this specific instance the theory has been employed for computing the
coverage dependent characteristic times for monomer capture from islands and
for island collision, in the case of impingement and/or coalescence mechanisms.
The ultimate aim is to model, by means of rate equations, the kinetics of film
formation over the whole range of coverage.
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1. Introduction

Thin film growth and, more generally, random growth are worth studying in themselves. In
fact, they are related to a lot of interesting subjects of applied mathematics, for instance the
fascinating world of stochastic processes. Moreover, film growth embodies several intriguing
concepts such as self-similarity, self-affinity, universality class, Voronoi tessellation, scaling
chaos, as well as the interesting physical question of which roughening, growth instabilities,
local growth, spatial correlation, Ostwald ripening are just a few examples [1]. Moreover,
film growth is also of great importance in several areas of technology, which range from
surface coatings to catalysts, from heterojunctions to nanostructure fabrication for electronic
devices, which have been winning considerable attention during the last few years. Several
film growth methods have already been developed in which the deposition occurs from both
liquid and vapour phases. As regards the deposition from the liquid phase, in addition to liquid
phase epitaxy (LPE), it is worth mentioning electrochemical film formation (EFF) which
consists in nucleation and crystal growth in electrochemical systems under the influence of
an electric field [2]. As far as the depositions from vapour phases are concerned, two large
classes of techniques have been worked out, namely chemical vapour deposition (CVD) and
physical vapour deposition (PVD). The former is the most common thin film deposition method,
especially in advanced semiconductor manufacturing. The new phase is formed as a result
of chemical reaction between gaseous reactants, usually at high temperatures, close to the
substrate. The product of the reaction deposits itself on the surface. This method is used
to deposit films of semiconductors (crystalline and non-crystalline) and insulators, as well as
metals. In PVD the material is physically transferred, in the vacuum environment, from the
source to the substrate without involving any chemical reaction. This process can be carried
out by means of thermal and/or electron beam heating or mechanically removing atoms from
the source through ion sputtering [3].

In this article we will deal with thin film formation characterized by nucleation and growth
where nucleation of adspecies at the surface strongly affects the kinetics of growth. These
conditions are encountered whenever a concentration of adspecies and, in turn, a diffusion
process are established on the substrate as, for example, in PVD and EFF.

Some specifications of notation are in order for the sake of clarity. Basically three terms
will be freely used throughout the article: cluster, island and nucleus. The first is an aggregate
of atoms related to a single nucleation event, the second is an isolated object made up, in
general, of connected clusters; ‘nucleus’ stands for the smallest stable cluster.

As a matter of fact the diffusion process has a tremendous impact on the film morphology.
In fact, as regards this aspect, there are at least three effects that must be taken into account.
In the first place, because of the adatom diffusion towards stable islands, a zone around each
island is established where the nucleation rate is reduced [4]. The reason is basically that the
closer the adspecies is to an island, the larger the probability of capture. The second effect
follows from the fact that the growth of each island is linked to the related Voronoi cell (VC) [5–
7], or, more properly, ‘edge cells’ [8]. Incidentally, this implies that, even in the simultaneous
nucleation case and before cluster impingement, the film morphology is characterized by a
distribution of island sizes. In the third place, during the island growth, nucleation is still
possible within the Voronoi cell, the extension of the diffusion zone (see the first effect) being,
in relation to the distances among the island borders, the crucial parameter for nucleation.
These issues are so important from the conceptual point of view that it is worth illustrating
them graphically. In figure 1 we show a circular island in its Voronoi cell at two different
times. The dashed circles represent the region where nucleation is almost forbidden. In the
following this region will be referred to as the nucleation forbidden zone (NFZ) [9].
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Figure 1. Pictorial view of a circular island in its Voronoi cell, at two values of the growth time:
t1 (panel (a)) and t2 > t1 (panel (b)). Around each island there exists a region in which nucleation
is nearly forbidden, because of admonomer depletion caused by island growth. This is the circular
region A displayed in panel (a). The concentration profile of the adatoms in the Voronoi cell is
also displayed. During the island growth the NFZ can exceed the size of the Voronoi cell and,
as a consequence, island growth is the only process occurring in the VC (panel (b)). Islands are
spatially correlated within the Rhc length.

In panel (a) a sketch of the concentration profile of adatoms close to the island is also
shown, as expected from the nature of the process (diffusion). In addition, two generic points
inside the VC, namely A and B, respectively inside and outside the NFZ, are displayed3.
The probability of nucleation is proportional to the adatom population and, by reason of the
concentration profile, the probability of nucleation in B is larger than that in A. Moreover, on
assuming that adatoms do not ‘escape’ from the VC, the probability that an adatom be captured
by the island in A is larger than that for B. On the other hand, when the NFZ becomes larger
than the VC, the nucleation probability drops to zero and, consequently, the island growth is
the only allowed process.

It is apparent that in such a situation nuclei and islands are spatially correlated. In
particular, at least two phenomena can be envisaged. Firstly, because of the NFZ, the nucleation
does not take place over the whole available space; thus a non-Poissonian space distribution
of nuclei comes about. Secondly, the growth of each nucleus depends upon the size of its
VC which, in turn, is a time dependent quantity. As a consequence, a local growth law is
established which gives rise to correlation effects among islands. In other words there is not

3 For the sake of simplicity, in this article the forbidden zone is modelled through the Heaviside function.



R574 Topical Review

a unique growth law for all nuclei. However, depending on the stochastic approach which
is employed, it is possible to resort to an average growth law. This allows one to extend the
analytical approach with respect to the numerical one.

Experimentally, the spatially correlated nucleation has been detected, for example, by
Yang et al [10] and by Cherepanov et al [11], the former studying the nucleation of Ge on
GaAs at 695 K, the latter studying Si and Ge nucleation on Si(111) with Bi as a surfactant.

Another phenomenon which has to be considered in thin film formation is the coalescence
or impingement of islands. Also in this case a clarification of the terminology is mandatory.
In the case of coalescence the distribution of matter among islands occurs under conservation
of both mass and island shape and, as far as three-dimensional islands are concerned, by a
reduction of the surface coverage too. In contrast, in the impingement case no redistribution of
matter takes place after collisions among islands [12] and each cluster retains its individuality.
Confining the analysis to the Poissonian nucleation, the kinetics of the number of islands can
be modelled analytically in film growth ruled by both impingement and coalescence processes.
Surprisingly, for the simultaneous nucleation case, the same behaviour of the island density,
as a function of surface fraction coverage, is obtained for both mechanisms.

In order to describe the kinetics of thin film growth, several methods have been developed,
which include kinetic Monte Carlo [13], stochastic differential equations [14] and rate
equations [1, 15] approaches. As we are interested in the time evolution of the fraction of
substrate surface covered by islands and in the number of islands, remaining in a semianalytical
framework, the rate equation approach is certainly the most suitable. From the historical point
of view, rate equations have been adopted for investigating the early stage of thin film growth,
from the beginning to the nucleation regime or just beyond it. On the other hand, to study
the kinetics over the entire range of surface coverage, it is necessary to take into account the
aforementioned phenomenon of island collision that, as a kinetic process, can be modelled,
after all, using a suitable time constant. In addition, also the time constant related to the growth
has to be modelled over the whole range of surface coverage. This quantity is nothing but the
lifetime of the monomer that performs a random walk on the surface before being captured
by an island. The two time constants depend upon the coverage and their knowledge allows
one to solve rate equations over the full range of coverage. Last but not least is the possibility
of treating, in the framework of a rate equation approach, even a non-random nucleation
process [16].

The present article is organized as follows. In the next section the theoretical background,
which rests on probability theory, is reviewed. The results stemming from the stochastic
treatment directly lead to the computation of the fractional surface coverage, the adatom
lifetime and the collision series, as we will show in section 3. They are all basic ingredients
for modelling, by means of a rate equation, thin film growth. To this topic section 4 is devoted.

2. Theoretical background

In this section the theoretical background is outlined, the results of which will be employed
in the next section. In particular, in this section we determine the exclusion probability, that
is the probability that, given a distribution of dots in a two-dimensional (2D) space, no one
of them falls in a given finite region. On the grounds of this probability we will see how it is
possible to derive a set of kinetic quantities for describing the film growth.

2.1. Formulation for a single class of dots

The basic question to answer is rather simple to state: given a distribution of dots in a 2D
space, what is the probability of finding a 2D region, let us say �, empty of dots? Otherwise,
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what is the probability that a plane figure, �, could be accommodated in a space not including
any dot?

In order to answer this question, we will make use of the correlation function formalism
which is described to a certain extent in the excellent textbook by Van Kampen [17] from
which we will borrow notation and follow.

To begin with, let us introduce the sample space. Each element (or state) of the space
consists of: (i) a non-negative number s; (ii) for each s, a set of 2D variables {x1, . . . , xs} each
of them ranging over the entire space.

The probability density function over these states is given by a sequence of non-negative
functions Qs(x1, . . . , xs), which obey the normalization condition

Q0 +
∞∑

s=1

1

s!

∫
dx1 . . . dxs Qs(x1, . . . , xs) = 1, (1)

where the presence of the factorial is due to the fact that the s! sets {x1, . . . xs} are
indistinguishable. In addition, the Qs s are symmetric functions of their variables.

The function ‘number of dots in the domain �’, N , defined in the same sample
space as the Qs s, can be written by introducing the indicator χ(x) in such a way that
χ(x) = 1 for x ∈ � and χ(x) = 0 otherwise. Thus N is represented by the sequence
{0, N1(x1), N2(x1, x2), . . . , Ns (x1, . . . , xs)} where

Ns (x1, . . . xs) =
s∑

k=1

χ(xk). (2)

Following the calculation reported in appendix A, the mean value of N and N2 can be
written as follows:

〈N〉 =
∫

�

dx1 f1(x1) (3)

〈
N2〉 = 〈N〉 +

∫

�

dx1

∫

�

dx2 f2(x1, x2), (4)

where

fn(y1, . . . , yn) =
∞∑

s=n

1

(s − n)!

∫
dxs−n Qs(y1, y2, . . . , yn, xn+1 . . . , xs). (5)

The functions { fn} will be referred to as f -functions; they are non-negativeand symmetric
in their arguments {xn}.

Let us consider now a generic function defined by the sequence

V ≡ {0, V1(x1), V2(x1, x2), . . . , Vs(x1, . . . , xs), . . .}

=
{

0, v1(x1),

2∑

k=1

vk(xk), . . . ,

s∑

k=1

vk(xk) . . .

}
(6)

and the functional defined as

L[v] ≡
〈

s∏

σ=1

{1 + v(xσ )}
〉

. (7)

The following mean values are evaluated in appendix B:

〈V 〉 =
∫

dx1 v(x1) f1(x1), (8)

〈
V 2〉 =

∫
dx1 v2(x1) f1(x1) +

∫
dx1 dx2 v(x1)v(x2) f2(x1, x2). (9)
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In order to simplify the notation the set of all coordinates will be indicated by 〈1〉, the set
of all distinct couples of coordinates by 〈2〉 and so on. By applying the term ‘distinct’ it is
understood that, for example, the term xνxµxν is the same as xνxνxµ. Thus

〈V 〉 =
〈
∑

〈1〉
v

〉
= (v f1) (10)

〈
V 2

〉 =
〈
∑

〈1〉
v
∑

〈1〉
v

〉
=
〈
∑

〈1〉
v2

〉
+ 2

〈
∑

〈2〉
vv

〉
= (

v2 f1
)

+ (vv f2) , (11)

where

(v f1) ≡
∫

dx1 v(x1) f1(x1)

and

(vv f2) ≡
∫

dx1 dx2 v(x1)v(x2) f2(x1, x2).

By the same method, the third moment becomes

〈
V 3〉 =

〈
∑

〈1〉
v
∑

〈1〉
v
∑

〈1〉
v

〉
=
〈
∑

〈1〉
v3 + 3

∑

〈2〉
v2v + 3!

∑

〈3〉
vvv

〉

= (v3 f1) + 3(v2v f2) + (vvv f3). (12)

Equation (7) can be recast as

L[v] =
〈

1 +
∑

〈1〉
v +

∑

〈2〉
vv +

∑

〈3〉
vvv + · · ·

〉
(13)

and thanks to (10)–(12) this reads

L[v] = 1 + (v f1) +
1

2
(vv f2) +

1

3!
(vvv f3) + · · · = 1 +

∞∑

n=1

1

n!
({v . . . v}n fn), (14)

where {v . . . v}n ≡ v(x1)v(x2) . . . v(xn). From equation (14) it follows that
(

δn L

δvn

)

v=0

= fn . (15)

All these results allow one to evaluate, for instance, the characteristic function of the
number N of dots in a given domain � defined by (2). In fact, if v = eikχ − 1, from
equations (7) and (14), we obtain
〈
∏

〈1〉
eikχ

〉
=
〈

exp

(
ik
∑

〈1〉
χ

)〉
= 1 +

∞∑

n=1

1

n!

(
eik − 1

)n
∫

�

fn dxn = 〈
eikN

〉
, (16)

from which, thanks to the general properties of the characteristic function, the probability PE ,
from now on referred to as the exclusion probability, that no dots occur in the domain � is
obtained as

PE (�) = 1 +
∞∑

n=1

(−)n

n!

∫

�

fn dxn = L[−χ]. (17)

Equation (17) is the answer to our question. Nevertheless, it would be preferable and convenient
to express the functional L[v] through a cumulant expansion. To this end equation (14) becomes

L[v] = exp

( ∞∑

n=1

1

n!
({v . . . v}n gn)

)
(18)
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and, applying equation (15), it is not a difficult job to show that, in order for equation (18) to
be true, the following cluster expansion must hold:

f1(x1) = g1(x1)

f2(x1, x2) = g1(x1)g1(x1) + g2(x1, x2)

f3(x1, x2, x3) = g1(x1)g1(x2)g1(x3) + g1(x1)g2(x2, x3)

+ g1(x2)g2(x1, x3) + g1(x3)g2(x1, x2) + g3(x1, x2, x3). (19)

For the special case v = eikχ − 1, thanks to equation (18), we calculate

〈
eikN

〉 = exp

( ∞∑

n=1

1

n!

(
eik − 1

)n
∫

�

gn dxn

)
(20)

and consequently the exclusion probability of having no dots in � reads

PE (�) = exp

( ∞∑

n=1

(−)n

n!

∫

�

gn dxn

)
. (21)

2.2. Formulation for many classes of dots

The theory outlined in the previous sections concerns dots of the same kind, i.e. they all belong
to the same class and are indistinguishable. The issue we want to deal with in the following is
more involved: we wish to compute PE for a countable set of distinguishable classes of dots.
They are indistinguishable within each class and correlated with one another independently of
the class to which they belong.

Each element (or state) of the sample space consists of: (i) a non-negative integer m;
(ii) a non-negative integer s; (iii) an m-tuple of strictly positive integers n1 . . . nm such that∑m

ν=1 nν = s; (iv) for each m, s and (n1 . . . nm), s 2D real variables exist, each of them ranging
over the whole space:

{x1, . . . , xn1}1, . . . , {x1, . . . , xnm }m︸ ︷︷ ︸
s

∈ �2s .

The probability density function over these states is given by a sequence of non-negative
functions Q which obey the normalization condition

Q(0) +
∑

{1}

∑

s

∑

�s
{1}

1

ni !

∫
Q(1)

π s
i

dxs +
∑

{2}

∑

s

∑

�s
{2}

1

ni !n j !

∫
Q(2)

π s
i j

dxs + · · · = 1, (22)

where {n} indicates the set of all distinct n-tuples of m classes. s is the total number of dots, m
is the number of classes; thus necessarily s � m. �s

{m} is the set which includes all partitions
of s with m integers and their distinct permutations. For instance

�5
{3} = {(113), (131), (311), (122), (212), (221)}.

π s
i1...im

is an element of �s
{m}.

Let V be a function over the same state space as for the Q s of the form V = V (1)+V (2)+· · ·,
where V (m) = ∑m

{1}
∑s

〈1〉 vi (xν) and the subscript of v refers to the classes while that of x refers
to the coordinates; then

〈V 〉 = 〈
V (1)

〉
{1} +

〈
V (2)

〉
{2} + · · · (23)

〈
V k

〉 = 〈
V (1)k

〉
{1} +

〈
V (2)k

〉
{2} + · · · . (24)
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Here only the computation of 〈V 〉 will be described in some detail (see appendix C); as far as
the evaluation of 〈V 2〉 and 〈V 3〉 is concerned, the reader may consult [18]. The expressions
read

〈V 〉 =
∑

{1}
(vi fi ) (25)

and
〈
V 2

〉 =
∑

{1}
(v2

i fi ) +
∑

{1}

∑

{1}
(viv j fi j), (26)

where fi and fi j are the generalizations of equation (5) to the many-classes case (see
appendix C).

Also in this case one can introduce a functional the derivatives of which with respect to
{vi } provide the f -functions; it is

L[{v}] =
〈

ni∏

〈1〉
{1 + vi }

n j∏

〈1〉

{
1 + v j

}
. . .

〉
. (27)

Exploiting the averages 〈V n〉, equation (27) can be written as

L[{v}] = 1 +
∑

m

∑

{m}

∑

s

∑

�s
{m}

1

n1! . . . nm!
(v

n1
1 . . . vnm

m fs (n1 . . . nm)),

fs(n1 . . . nm) being the f -function depending upon s = ∑m
i=1 ni variables of which n1 are of

class 1, n2 of class 2 and so on. As in the single-class case, the f -functions are given by
(

δ p L

δ p1v1δ p2v2 . . . δ pk vk

)

{v}=0

= f p(p1 . . . pm), (28)

where p = ∑m
i=1 pi . The cumulant expansion reads

L[{v}] = exp




∑

m

∑

{m}

∑

s

∑

�s
{m}

1

n1! . . . nm!
(v

n1
1 . . . vnm

m gs (n1 . . . nm))



 (29)

and, thanks to equation (28), it is possible to link f s to g s. At long last, the probability that
no dots of the class i be in the �i domain, no dots of class j be in the � j domain etc can be
evaluated and they read [18, 19]

PE ({�}) = exp




∑

m

∑

{m}

∑

s

∑

�s
{m}

(−)s
∫
�1

dx
ns

1
1 . . .

∫
�m

dxns
m

m gs (n1 . . . nm)

n1! . . . nm!



 . (30)

This last equation can be recast, as demonstrated in appendix D, as

PE ({�}) = exp

[
∑

s

(−)s

s!

∑

i1

. . .
∑

is

ρi1 . . . ρis

∫

�i1

dx(i1) . . .

∫

�is

dx(is) g̃s(x(i1) . . . x(is))

]
,

(31)

where

gs ≡ ρ
n1
1 . . . ρnm

m g̃s, (32)

ρ1 . . . ρm being the densities of dots of classes 1, . . . , m, respectively. The ik s run,
independently, over all classes.

For the purpose of studying the film growth it is useful to transform equation (31)
by considering a continuous distribution of classes of dots and this is readily achieved by
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introducing a parameter t , such that dρ = dρ

dt dt , the sums over a countable set of classes,
become integrals over the domain of t . It goes without saying that the domains of the arguments,
as well as the arguments of gs , also depend upon the parameter t . The exclusion probability
reads

PE ({�}) = exp

[
∑

s

(−)s

s!

∫
dρ

dt1
dt1 . . .

∫
dρ

dts
dts

∫

�t1

dx(t1)
1 . . .

∫

�ts

dx(ts)
1 g̃s

]
. (33)

3. Basic ingredients for rate equation modelling

3.1. The fractional coverage, �

The exclusion probability, introduced in the previous section, can be employed for computing
the kinetics of the fractional coverage, �, under the following assumptions: (i) the critical size
of the nucleus is zero; (ii) the nucleation and growth laws of the clusters are given a priori.
Under these circumstances the fractional coverage is simply given by

� = 1 − PE (�), (34)

where |�|, which is a function of time, is the area of the cluster projection on the substrate
surface. In the case of circular clusters of radius R, |�| = π R2. It stems from point (ii)
that the modelling based on equation (34) is suitable for describing film growth governed
by the impingement mechanism whatever the shape of the clusters, provided, in the case of
anisotropy of their shape, that they are all oriented in the same way [20]. Otherwise, it is
mandatory to reckon with the blocking or shielding effects, as was first done by Weinberg and
co-workers [21]. In the following, if not explicitly stated, we will consider circular clusters.
In equation (34) the time dependence of � is due to the nucleation function and to the growth
law of the clusters.

Let us begin by considering the simplest application of this approach to the growth of thin
films: the nucleation of spatially uncorrelated islands. In this case g̃s = 0∀s � 2 and g̃1 = 1;
then from equation (33), identifying the continuous parameter t quite naturally with time, we
get

PE = exp(−�e) = exp

(
−
∫

dρ

dt ′ dt ′
∫

�t ′
dx
)

= exp

(
−π

∫ t

0
Ip(t

′)R2(t, t ′) dt ′
)

, (35)

where Ip = dρ

dt is the nucleation rate and π R2(t, t ′) = |�t,t ′ |, R(t, t ′) is the radius, at running
time t , of those nuclei which started growing in the time interval between t ′ and t ′ + dt ′. �e

is the so-called extended surface coverage. Thanks to equation (34) we eventually get

�(t) = 1 − e−�e(t). (36)

Usually the time dependence of the cluster radius is assumed to be of the form R ≡ R(t − t ′),
and the extended fractional surface becomes the convolution product of the nucleation rate
and the cluster growth law. It is at this level that the kinetics embodies the physical quantities
which govern the phase transformation.

Equation (36) was first obtained by Kolmogorov [22] and, independently, two years later,
by Johnson and Mehl [23] and by Avrami [24] and is called the KJMA model after them [20]. It
is worth noting that, on the grounds of the statistical approach outlined in the previous section,
the nucleation rate in equation (35) is also comprehensive of those nuclei which are captured
by the growing phase before they start growing. These nuclei do not contribute to the phase
transformation, yet they must be included in the mathematical definition of �e. They were
called ‘phantom’ nuclei by Avrami. Nevertheless, since only the actual nucleation rate, Ia, is
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Figure 2. The non-physical overgrowth phenomenon in thin film growth. (a) The actual (A) and
the phantom (B) nuclei start growing at times t1 and t2 > t1, respectively. The KJMA theory is
unsuitable for describing kinetics where the overgrowth phenomena are allowed. (b) Overgrowth
event of a phantom nucleus in the case of a parabolic growth law. The actual nucleus located at
x1 starts growing at time t1 and the phantom nucleus located at x2 starts growing at time t2. The
overgrowth occurs at time t∗ at the intersection of the two parabolas. The segment that joins the
two intersections between a parabola and a line parallel to the x-axis represents the grain size at
the given time. The extension of the overgrowth is also highlighted at the actual time.

accessible by experiment, it is beneficial to write the extended surface in terms of this rate. As
shown in [25], in the case of a random distribution of nuclei the ‘phantom-included’nucleation
rate is equal to

Ip(t) = Ia(t)

1 − �(t)
(37)

and the kinetics equation (36) becomes an integral equation for the fractional surface coverage,
�(t). Moreover, the importance of phantoms is emphasized by the constraint their existence
imposes on the cluster growth law. Indeed it happens that for growth laws satisfying the
condition ṙ(t − t ′) < ṙ(t − t ′′) with t ′ < t ′′, a phantom cluster could overtake the ‘real’ cluster
that covers it. This unphysical phenomenon is called ‘phantom overgrowth’ (figure 2). As a
consequence, this kind of growth law does not fall within the class of those treatable using the
KJMA model [25]. However, as we will discuss below, the limit of the theory, determined
by the phantom overgrowth, can be overcome by facing the kinetic problem at a higher level,
namely by treating the phase transformation as a correlated nucleation problem [26].

The simplest application of equation (35) is related to the simultaneous nucleation case
which is expressed by the nucleation rate Ip(t) = Ia(t) = N0δ(t), where N0 stands for the
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number of nuclei per unit area and δ for the Dirac delta function. The kinetics reduces to the
function

�(t) = 1 − e−π N0 R2(t). (38)

For a cluster radius which evolves according to a power law of the sort R(t) = vtn , the KJMA
formula reduces to the stretched exponential

�(t) = 1 − e−atm
, (39)

where a = π N0v
2 and m = 2n. By using the power growth law, a similar expression is also

obtained for constant nucleation rate.
The KJMA kinetics has been employed for describing experimental kinetics of thin film

growth. One of its first applications to surface science dates back to 1974 and is due to
Holloway and Hudson [27]. They studied the oxidation of the nickel (100) surface by means
of Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and techniques
based on measurements of the work function. The fractional coverage that was determined
through the intensity of the 507 eV oxygen Auger line, exhibits the typical sigmoidal behaviour
as a function of oxygen exposure. In particular, for cylindrical islands the following relation
holds: � = IAES−Ic

In−Ic
, Ic and In being, respectively, the signals from the uncovered portion of the

substrate and from n layers of NiO, which is also in appropriate units the (time independent)
height of the islands. The authors describe the kinetics in the framework of the Dirac delta
nucleation and, by this means, compute the nucleus density and the growth rate. The latter
quantity has been modelled by considering the growth kinetics to be limited by either the surface
diffusion of adatoms or the capture of oxygen molecules at the perimeter of the islands. For both
cases they found R(t) = vt2 which leads, by means of an Arrhenius plot, to the determination
of the activation energy for cluster growth which, in turn, is proportional to the difference
between the diffusion and desorption activation energies. Behm et al by means of LEED
intensity measurements performed as a function of time were able to establish that the oxygen
induced (2 × 1) reconstruction of Ni(110) proceeds through nucleation and growth and that
the time evolution is described by equation (39), finding m = 0.3 [28].

An experimental study on the kinetics of the fractional coverage of diamond film at a
solid substrate based on the KJMA model has been reported in [29]. Synthetic diamond was
grown on a deformed Si surface by using the hot filament CVD technique which employs a
mixture of CH4 and hydrogen. Diamond formation occurs via the Volmer–Weber mechanism
since diamond has the highest surface energy among known materials. Via scanning electron
microscopy analysis it was also established that the growth is governed by impingement.
The study presented in [29] is quite comprehensive in that it reports on the nucleation and
fractional coverage kinetics, on the correlation degree of the nuclei as well as on the kinetics
of the island perimeter. The main results of this experiment are shown in figure 3. In panel
(a) we report the nucleation kinetics which clearly indicates that the nucleation process comes
to an end in a time much shorter than that for film growth. This implies that the nucleation
rate can be well approximated by a Dirac delta function. The microscopic growth law of the
diamond cluster is reported in panel (b). In particular, both the maximum and the average
equivalent diameters of diamond crystallites, as obtained from the size distribution functions
of well separated particles, are shown. The cluster radius increases linearly in time. In panel
(c) we show the statistical analysis that is aimed at determining whether or not the diamond
nuclei are distributed at random throughout the substrate surface. In panel (c) the full line is
the Poisson function computed using the average number, m, of nuclei in a ‘sampling circle’
whose radius was chosen to be 1√

N0
, N0 being the nucleation density. The reliability of the

Poisson distribution has been confirmed by a χ2 test, and with it the application of the KJMA
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Figure 3. Analysis of experimental data on diamond nucleation and growth at the Si(100) surface
by the CVD technique. (a) Nucleation kinetics for 1 h (triangles) and 3 h (circles) deposition time.
(b) Microscopic growth law for both the maximum (triangles) and the average (squares) equivalent
diameter as obtained from the analysis of the size distribution function of diamond crystallites. (c)
Histogram of the nucleation events within a sampling disc of radius equal to the average distance
among nuclei. The solid line is the curve expected in the case of a Poissonian distribution of nuclei
as evaluated by using the experimental mean value of n. (d) Avrami plot of the fraction of surface
covered by diamond, �. For the KJMA model this plot is a straight line. (e) Total perimeter of
the film, 
, as a function of surface coverage. The solid line is the best fit of equation (40) to the
experimental data.

model. The Avrami plot of the fractional surface coverage, namely ln(−ln[1 − �]) versus t ,
is shown in panel (d). From the slope of this curve the growth law of the cluster is obtained
and it is found to be in excellent agreement with the direct measurement reported in panel (b).
In the last panel we show the kinetics of the total perimeter of the diamond film, per unit of
substrate area. In the framework of the KJMA method, it can be computed, analytically, as
a function of the surface coverage [30], and in the particular case of simultaneous nucleation
the kinetics depends upon nucleation density only, according to the relationship


(�) = √
4π N0(1 − �) [− ln (1 − �)]1/2 . (40)

According to equation (40) the perimeter is maximum at � = 1 − e−1/2 � 0.39. In figure 3
panel (e) the continuous line is the best fit of equation (40) to the experimental points. From
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the fitting parameter the nucleation density of diamond has also been obtained and it is found to
be in good agreement with the value determined from the direct measurements (figure 3 panel
(a)). It is worth mentioning, in passing, that in general the film perimeter can be expressed as
a series expansion in terms of the f -function [31]. This formulation can be used to describe
the kinetics of island perimeter in the case of spatially correlated nuclei.

Incidentally, the stochastic process of dots has been recently used for modelling film
roughness and the height–height correlation function for different hillock shapes and different
nucleation modes [32]. The authors found that the surface height distribution is asymmetric
and the height–height correlation function is non-Gaussian.

Let us now pass to considering the more general case of non-random nucleation. The
general expression for the fractional coverage is obtained by simply combining equations (33)
and (34). In order to obtain a mathematical expression similar to that for the Poissonian case,
it is beneficial to define a function, γ , as the ratio between the exponent of equation (34) and
the extended surface coverage. The fractional coverage therefore reads

� = 1 − e−γ�e . (41)

Obviously in the random case γ = 1, whereas in the correlated one the γ factor is different from
one and depends upon the nucleation rate, m-dot correlation functions and �e. Incidentally,
although not necessarily in 2D, other approaches have been proposed for treating phase
transition kinetics in the case of non-random nucleation. In this respect, among others, we
quote the papers by Trofimov and Hermann for 3D and 2D transitions, [33, 34] respectively.

To begin with, we confine our attention to the simultaneous nucleation case which stems
from considering, in the stochastic approach, a single class of indistinguishable dots (see
section 2.1). Furthermore, the system is considered to be homogeneous and isotropic which
implies g1 = N0 and gm = gm(|r2 − r1|, . . . , |rm − r1|). Combining equations (21), (34)
and (41), the truncation of the γ expansion to the second-order term in the correlation functions
leads to [35, 36]

γ = 1 +
�e

2
− N2

0

2�e

∫ R

0
2πr dr

∫ 2π

0
dθ

∫ η(r,θ)

0
g(ξ)ξ dξ, (42)

where the two-dot correlation function has been expressed in terms of the radial distribution
function, g(ξ), according to the relationship g2(ξ) = N2

0 [g(ξ) − 1]. In equation (42),
η(r, θ) = r cos θ + (R2 − r2 sin2 θ)1/2 and �e = π N0 R2. The fractional coverage has been
computed for nuclei correlated according to the hard core model which implies that the distance
among nuclei cannot be shorter than a given value, say Rhc. The lowest order term of the radial
distribution function is given by

g(ξ) = H (ξ − Rhc), (43)

where H is the Heaviside function and Rhc the hard core diameter, i.e. the radius of the circular
region, surrounding each nucleus, where nucleation is prevented (figure 4). The approximation
equation (43) holds for low values of the surface density of nuclei [37], a condition which is
usually satisfied in thin film growth. The γ exponent is a function of �e and of �∗ = π N0 R2

hc,
this last term being a possible measure of the degree of correlation among the nuclei. Indeed,
�∗ has the meaning of extended area with nucleation precluded, which is larger than the
area where nucleation is actually prevented because of the overlaps among excluded zones of
the nuclei. For the hard core model the validity of the analytical approach has been verified
through computer simulations over the range 0.2 < �∗ < 1.5 where the γ factor has been
obtained through numerical integration of equation (42). The results are displayed in figure 5
for �∗ = 0.2 (panel (a)), �∗ = 0.7 (panel (b)), �∗ = 1.5 (panel (c)); the KJMA solution
(�∗ = 0) has also been reported. The agreement is excellent for �∗ = 0.2 and 0.7 and
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Figure 4. Sketch of the nucleus arrangement spatially correlated according to the hard core model.

more than satisfactory for �∗ = 1.5. In [35] an analytical expression for γ has been achieved
by simply decoupling the integrals over ξ from those over r and θ , namely by setting η = R.
The γ expression reads

γ = 1 +
1

2

[
�e H

(
1 − �e

�∗

)
+ �∗H

(
�e

�∗ − 1

)]
(44)

and, as shown in figure 5, well describes the kinetics over the whole range of the �e values.
Apparently, from the mathematical point of view the derivation of equation (44) is not justified,
yet it can be accepted to the extent that it reproduces computer simulations. Once its excellence
is recognized, it undoubtedly has the merit of being easy to employ in the treatment of
experimental data. The evaluation of the γ exponent by considering the term of order N0 in the
expansion of the radial distribution function indicates that that contribution is negligible [35].
On the other hand, for high correlation degrees (�∗ = 1.5) the discrepancy between the
analytical solution and the computer simulation, in the region of high coverages, is ascribed
to the contribution of the m-dot correlation functions with m > 2.

The knowledge of the probability function PE (�) can be extremely useful for solving
kinetic problems which are not linked, apparently, to the physical processes of nucleation
and growth. In fact, the continuum space random sequential adsorption (RSA) and the Tobin
process [38] can be successfully tackled in the framework of the stochastic approach discussed
already. The RSA process consists in throwing discs, at random, onto a surface where overlap
among discs is not permitted. Such a process models the random non-ideal adsorption of
molecules at a solid surface when interaction among molecules behaves according to the hard
disc potential. It is evident that a coverage value exists for which there is no more room
available for accommodating other discs (jamming point). In other words the kinetics ends for
a coverage value lower than one. The Tobin process has been formulated in 1974 in the ambit of
thin film growth and refers to the model case of non-simultaneous nucleation and instantaneous
growth up to a finite value of the disc radius. Tobin’s process is the equivalent of throwing discs
at random onto a flat surface and removing any disc whose centre falls into an area already
occupied by previously thrown discs. The kinetic problem of both RSA and Tobin’s processes
consists in determining the fraction of substrate surface covered by molecules and by film,
respectively.
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Figure 5. Comparison between Monte Carlo simulations (dots) and analytical solutions in the case
of simultaneous nucleation. The spatial correlation among nuclei has been described according to
the hard core model for �∗ = 0.2 (panel (a)), �∗ = 0.7 (panel (b)) and �∗ = 1.5 (panel (c)). Full
symbols are the output of the computer simulations performed, for R(t) = atn at a = n = 1. The
curves computed using equation (44) are displayed as open symbols. The continuous line is the
analytical solution obtained by considering only the Heaviside term in the g(ξ) expansion. In the
cases �∗ = 0.2, 0.7 full lines and open symbols coincide. The dashed lines represent the KJMA
solution.

As far as the RSA kinetics is concerned we note that equation (21) can be employed for
computing the adsorption rate of discs of diameter σ . In fact the adsorption rate is

dN

dt
= F PE (�σ ) = Fe−γ�e , (45)

where F is the flux of discs which impinge at the surface, dN
dt is the adsorption rate, PE (�σ ) is

the probability that an incoming disc finds enough room to be adsorbed and |�σ | = πσ 2. It is
evident that this is nothing but a problem of simultaneous correlated nucleation according to
a hard disc model with Rhc = σ . Consequently, in terms of the previously defined �e and �∗
quantities, the continuous space RSA implies �e = �∗ = π Nσ 2 where the surface coverage
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Figure 6. Kinetics of continuous space random sequential adsorption. The adsorption rate for hard
discs is plotted as a function of surface coverage (F = 1). The analytical solution equation (46)
(full line) has been compared with the numerical simulation (dots).

of the adsorbed disc is � = Nπσ 2/4. By employing equation (44) for the γ exponent one
ends up with

dN

dt
= F exp [−4� (1 + 2�)] (46)

and then
d�

dL
= exp [−4� (1 + 2�)] , (47)

where L = πσ 2 Ft/4. As displayed in figure 6 the equation (46) is in very good agreement
with the MC simulation, except in the high coverage regime that is characterized by very low
adsorption rates [39]. Equation (46) is not suitable for studying the complete behaviour of
the kinetics; indeed it does not predict any maximal coverage. This issue is better tackled
by employing an f -function representation of the Q probability (equation (17)), for in this
case only the integrals up to n = 5 have to be retained [39–41]. The expression for the d�

dL
rate is a polynomial and the adsorption process is therefore characterized by an asymptotic
coverage value, usually called the jamming point. For instance, expansion of PE (�σ ) in terms
of f -functions up to the second-order term f2 considering only the Heaviside contribution to
the radial distribution function gives

d�

dL
≈ 1 − 4� + 8(1 − α)�2, (48)

where α = 1 − 33/2/4π is referred to as the impingement factor [42]. However, truncation of
the series to the second-order term is not accurate for determining the jamming point; in fact
it provides a saturation point of 0.35 against the exact value 0.547 [43].

Let us now briefly dwell upon Tobin’s process. The constraint to which the nucleation
event is subjected clearly indicates that, in this case also, we are facing a hard core correlation
problem with Rhc = R = σ/2, σ being the disc (i.e. nucleus) diameter. The fraction of
transformed surface is therefore given by equation (41) where the extended surface is now
�e = π N(t)σ 2/4, N(t) being the disc density at time t . It is worth noting the analogies of
and differences between the RSA and Tobin processes: (i) the hard core radius differs by a
factor of 2; (ii) in Tobin’s process, at variance with the RSA, due to the overlap among discs
the fraction of transformed surface is not equal to the extended surface. The application of
equation (41) for describing Tobin’s process has been thoroughly discussed in [44], also in
relation to the approximate solutions previously put forward. As for the RSA, in this case also
the integrals of functions fn with n > 5 are identically nil. Consequently both in the RSA and
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Figure 7. Pictorial view of hard core correlations in thin film growth for three values of the running
time. In case (a) nucleation is not allowed within the correlation length, Rhc, from the nucleus
centres (dashed circles). As the running time increases the nucleus radius becomes larger than Rhc
and phantom nucleation is possible (running time t3). In case (b) nucleation is forbidden both in
the already transformed surface and in an annular ring of thickness Rhc drawn around each nucleus.
In this case phantom nucleation is not included in the analytical model.

the Tobin processes the fraction of covered surface admits a saturation point, that is d�
dt is zero

at finite values of � which are the zeros of the PE . In summary, Tobin’s process for discs of
radius R is stochastically ‘equivalent’ to an RSA process for discs of radius R/2.

Let us now pass to broaching thin film growth in the case of non-simultaneous nucleation of
correlated nuclei. In these circumstances it is compulsory to resort to the exclusion probability
computed in section 2.2 for distinguishable classes of dots. In fact, the nuclei start growing
at any time, t ′, in the interval [0, t], under a growth law given a priori: R = R(t, t ′), so
we can classify, and therefore distinguish, cluster sets in terms of their radius: the time of
birth, t ′, becomes, in the continuum limit, the class index. In this event, the nuclei (dots) are
distinguishable because of their size. The fractional coverage is obtained by computing the
probability that no nuclei belonging to any of the t ′ classes appear in the area �t,t ′ = π R(t, t ′)2.
By making use of the equation (33), identifying, quite naturally again, the parameter t with
time, thanks to equations (41) and (34) it is possible to show, retaining terms up to the second
order in the correlation functions [18, 19], that

γ = 1 +
1

2
�e − 1

2�e

∫ t

0
I (t ′) dt ′

∫ t

0
I (t ′′)�(t ′, t ′′) dt ′′, (49)

where the �(t ′, t ′′) reads

�(t ′, t ′′) =
∫ R(t,t ′)

0
2πr dr

∫ 2π

0
dθ

∫ η[R(t,t ′′),r,θ]

0
g(ξ, t ′, t ′′)ξ dξ, (50)

in which the translational invariance of the system was exploited. The function g(ξ, t ′, t ′′) is the
radial distribution function of a pair of nuclei belonging to the t ′ and t ′′ classes. Depending upon
the correlation function, several processes can be investigated. In what follows we report on
the cases (a) and (b) displayed in figure 7. Case (a) concerns the hard core constant correlation
length. It is measured from the nucleus centre and within it nucleation is forbidden. Once
the cluster radius overtakes the correlation distance, nucleation of phantom clusters becomes
possible. The second case ((b) in figure 7) deals with the more physical situation where
nucleation is forbidden both in a region already transformed by the new phase and, possibly,
in an annular ring of constant thickness around each nucleus. It goes without saying that other
correlation mechanisms can be devised, for instance, the dependence of the thickness of the
annular ring upon the cluster radius.
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Figure 8. Comparison between the Monte Carlo simulations (open symbols) and the analytical
solutions (equations (41), (51)) in the case of constant nucleation rate. The spatial correlation
among nuclei has been described according to the hard core model where Rhc denotes the hard
core radius. The KJMA solution is also shown.

As far as the first case is concerned, the correlation function is given, subject to the limits
already discussed, by equation (43). The γ factor has been computed, analytically, in the case
of constant rates of both nucleation and cluster growth and, as for the simultaneous nucleation
case, the integrals (equation (50)) have been arbitrarily decoupled by using the condition
η = R(t, t ′′), giving4

γ (�e,�
∗) = 1 +

�e

2
H

(
1 − 3�e

�∗

)
+

1

2

[
�∗ − 2�e

(
�∗

3�e

)3/2
]

H

(
3�e

�∗ − 1

)
(51)

where �∗ = Iπ R2
hct is the ‘extended area’ with nucleation precluded and Rhc is the hard core

radius. The validity of equations (41), (51) has been verified through computer simulations.
The simulation has been performed on a 300 × 300 square lattice where in any iteration 250
new nuclei start growing. The comparison among the analytical and the numerical calculations
is shown in figure 8 for two values of the hard core radius. As appears also in this case, the
agreement between the analytical model and the simulation is more than satisfactory.

As regards case (b) the zero-order radial distribution function is given by

g(ξ, t ′, t ′′) = H [ξ − (
R(t ′′ − t ′) + Rhc

)
], (52)

4 As we have underlined in discussing the simultaneous nucleation case, the benefit of ‘decoupling’ the integral
resides in its capacity for reproducing the experimental and/or numerical data. Since the � function is symmetric in

the t ′, t ′′ arguments, the integral equation (49) is also equal to γ = 1 + 1
2 �e − 1

�e

∫ t
0 I (t ′) dt ′

∫ t ′
0 I (t ′′)�(t ′, t ′′) dt ′′

which, once decoupled, leads to γ (�e,�
∗) = 1 + �e

2 H (1 − 3�e
�∗ ) + �∗

12 [3 − ( �∗
3�e

)2]H ( 3�e
�∗ − 1) which differs from

equation (51). Nevertheless the difference between the two is negligible and they can be used interchangeably.
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Figure 9. Kinetics of thin film growth in the case of random distribution of nuclei and constant
nucleation rate (KJMA kinetics). The points represent the classical KJMA solution which implies
the inclusion of the virtual nucleation throughout the whole space in the computation of �e. The
open symbols are the kinetics of the phase transition obtained by using the actual nucleation; in fact
the actual nuclei are spatially correlated. The parameter values are (equation (39)): a = 0.3̄×10−2

(curve a), a = 1.1̄ × 10−3 (curve b) and m = 3.

where the growth law is assumed to be in the form R = R(t − t ′). It is worth remarking that
such a correlation does not allow phantom nucleation. Therefore, since in the limit Rhc = 0 the
growth process reduces to the one solved by KJMA, the approach of section 2.2 together with
equation (52) reproduces the KJMA kinetics by using the actual nucleation (phantoms are not
included). This result is particularly important not only because it uses the actual nucleation
rate that is accessible by experiment, but also because it can be used for any growth law.
In contrast, as anticipated above, the KJMA theory cannot be applied to any kind of growth
law. Reference [26] is devoted to illustrating that the classical KJMA solution is obtained by
dealing with correlated nucleation which obeys equation (52) with Rhc = 0. In the correlated
approach the integral equation (49) has to be computed, which includes the actual nucleation
rate. Nevertheless it is readily evaluated by combining equation (37) and equation (36). The
computation has been performed for square clusters and for the following pair distribution
function:

g(r, t ′, t ′′) = W (x, y, l1,2), (53)

where W is the two-dimensional square well of side l1,2, r ≡ (x, y), l1,2 = l(t ′′ − t ′) =
(t ′′ − t ′)v, l being the cluster side and v the growth velocity. The solutions of the KJMA
problem obtained by dealing with the correlation among actual nuclei and the classical KJMA
kinetics have been compared in figure 9: the agreement is excellent.

3.2. The adatom lifetime

The exclusion probability can be also used for computing a physical quantity that is
indispensable for modelling thin film growth through the rate equation method: the adatom
lifetime (see also section 4). In film growth ruled by the diffusion mechanism the adatom
performs a random walk on the surface before being captured by the islands of the new phase.
The average time elapsed between the arrival of the monomer at the surface and its capture is
the lifetime of the adatom, τ . The computation of τ is performed using a stochastic approach
which relies on the definition of the probability P[t ′, t,�(t ′),�(t)] that an atom that landed
on the surface at time t ′ does not suffer any capture event until time t . Since −∂t P(t) is just the
probability that the adatom will be captured in the time interval [t, t + dt], the adatom lifetime
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results as

τ = 1∫∞
t ′ dP(t)

∫ ∞

t ′
t dP (t). (54)

The computation can be considerably simplified by resorting to the so-called QSA (quasi-static
approximation). Under this approximation, during the lifetime of the adatom the fractional
coverage does not change and can be set equal to the coverage at the monomer landing time.
As a consequence, P depends upon � parametrically and, for each value of the parameter, the
landing time can be set equal to zero, so that [45]

τ (�) = 1

P(0; �)

∫ ∞

0
P(t; �) dt, (55)

where P(0; �) = 1 − � is the probability that the adatom, at the landing time, be on the
uncovered portion of the substrate. The following step is to determine the function P(t; �).
The simplest case that can be treated analytically is simultaneous nucleation without monomer
re-evaporation.

Two advantages stem from these hypotheses, namely that the consumption of monomers
is only due to island growth and the clusters all have the same size. A neat approach for
solving this problem is exploiting the random walk of the dressed adatom. By ‘dressed’ we
mean that the monomer in its random walk carries with it an area equal to that of the cluster
at time t . In this way the probability that the dressed adatom met a nucleus is the same as the
probability that the adatom is captured by any cluster (figure 10). It is evident that in the time
interval [0, t ′] during its roaming on the surface the dressed adatom will cover a portion of the
surface of area, say, |�l,t ′ | where l is the cluster side. Consequently, the probability that we
are searching for is just equal to the exclusion probability on the region �l,t ′ , i.e.

P(t ′) = PE (�l,t ′ ), (56)

which also depends, as anticipated, on the running time through the cluster side l = l(t). The
question is how to determine the region �l,t ′ . The simplest and most reasonable way to answer
this question is to consider a square region whose side is proportional to the random walk
standard deviation [45, 46]: l(t) + 2 p

√
2Dt ′, p being a dimensionless factor. The adatom

lifetime becomes

τ = 1

1 − �

∫ ∞

0
PE

{[
l(t) + 2 p

√
2Dt ′

]2
}

dt ′. (57)

For a Poissonian distribution of nuclei the computation is straightforward and leads to [45]

τ ′ = DN0τ = [− ln(1 − �)]

4 p2(1 − �)

∫ ∞

0
(1 − �)(1+ξ)2

dξ, (58)

which indicates that the dimensionless lifetime, τ ′, is a universal function of the surface
coverage. As far as the p parameter is concerned it has been estimated by fitting the
analytical result for the random case (equation (58)) to the lifetime as obtained by Monte Carlo
simulations [45]. The computer simulations indicate that p depends, weakly, on the fractional
coverage, with an average value of p = 0.9. On the basis of the conjecture according to which
the p quantity is a property of the random walk, the same p value can also be retained for
modelling the correlated case.

The analytical computation of the adatom lifetime in the case of simultaneous nucleation
of correlated square nuclei has been recently presented in [47]. The correlation among nuclei
is described in the framework of the hard core model where the radial distribution function is
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(a)

(b)

Figure 10. Sketch of an adatom (walker) wandering on a surface that is covered by islands (panel
(a)). The probability that the walker be captured by a cluster can be computed by considering the
stochastic process of the capture of the dressed adatom (panel (b)) by a nucleation centre.

approximated by a square well of side lc: g(x, y) = W (x, y; lc). The γ term which enters in
the probability function, PE (|�l,t ′ |) = exp(−γ N0|�l,t ′ |), is given according to

γ = 1 +
Xe

2
− N2

0

2Xe

(L, lc) (59)

with


(L, lc) = 4
∫ L/2

0
dx ′

∫ L/2

0
dy ′

∫ L/2−x′

−(L/2+x′ )
dx

∫ L/2−y′

−(L/2+y′)
W (x, y; lc) dy

= 2

{(
L − lc

2

)2
[

L2 − 1

2

(
L − lc

2

)2
]}

H

(
L − lc

2

)
, (60)

where L = l(t) + 2 p
√

2Dt ′ and L2 = |�l,t ′ |. Also in the correlated case it is possible to
define the dimensionless lifetime, τ ′, as already done in equation (58). Clearly, the presence
of correlation between nuclei introduces an extra dependence of τ ′ on the extended excluded
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Figure 11. The adatom lifetime, normalized to the diffusion coefficient and to the nucleus density,
is shown as a function of surface coverage: open circles, �∗ = 0; solid circles, �∗ = 0.2; open
squares, �∗ = 0.8; solid squares, �∗ = 1.5.

area, that is on �∗ = N0l2
c . In other words, the lifetime is a function of �e = N0l2, �∗ and

p. However, by exploiting the kinetics of the fractional coverage, � = �(�e,�
∗), the �e

coverage can be easily expressed in terms of both actual coverage and extended excluded area.
In figure 11τ ′(�,�∗, p) is shown as a function of � at p = 0.9 and for several values of the
correlation degree, �∗. For �∗ = 0 the random case is recovered where the evolution of the
fractional coverage is given by the KJMA theory [24]. Figure 11 shows that for a given � value
the adatom lifetime is a decreasing function of �∗. This result can be justified on the basis
of the morphology of the film, for overlaps among clusters are expected to be less effective as
the correlation degree of the system increases. In the random case this implies a distribution
of islands which allows for the presence of larger uncovered regions of the substrate, when
compared to the correlated nucleation. In other words, the transformed phase is expected to
be more homogeneous for larger �∗ values.

3.3. Coalescence and impingement

One of the problems that occurs during the film formation characterized by nucleation and
growth is the collision among clusters. This issue must be taken into account in a scheme of
description based on rate equations whenever it is intended to study the film evolution over
the entire range of coverage, i.e. 0 � � � 1. The rate equation approach has been frequently
employed to study the early stage of film formation, namely the nucleation stage. For this
reason, in almost all the work devoted to this, terms linked to collision are missing from the
equations. However, it is worth stressing that ignoring the contribution of cluster collision
and, at the same time, achieving a good description of the kinetics is strictly connected to the
presence of spatial correlation among nuclei and/or between nuclei and islands. As a matter
of fact, if the nucleation were Poissonian the rate of collision would not be negligible even at
the very beginning of the film formation. The reason resides in the fact that the probability of
finding two nuclei very close each other is not negligible at all for a Poisson process.

It goes without saying that as the kinetics proceeds,cluster collision is unavoidable, leading
to a reduction of the number of islands. We distinguish two extreme cases: coalescence and
impingement. By the former we mean a collision process followed by a redistribution of matter
with shape and mass conservation. The latter, instead, describes a collision process where no
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matter redistribution or relaxation occur at all; in other words, when two or more clusters
impinge they retain their individuality.

Our aim is to determine the law which governs the reduction of the island number as a
function of surface coverage �. To this end we will employ a stochastic approach under the
following hypotheses:

(a) there are N0 dots per unit area (dot, centre of cluster and nucleus are synonymous);
(b) the dots are distributed at random and homogeneously throughout the space;
(c) all of the clusters have the same size whatever the value of �.

Moreover, we add a further assumption, in order to make calculations simpler:

(d) clusters are squares.

If N(�) is the number of islands at �, we may write

N0 =
∑

k

k Nk(�), (61)

N(�) =
∑

k

Nk(�), (62)

where Nk(�) is the fraction of islands made up of k clusters; such an island will be referred
to as a k-island. Equations (61) and (62) can be rewritten as [48]

1 =
∑

k

k Nk(�)

N0
≡
∑

k

Pk(�) (63)

G(�) = N(�)

N0
=
∑

k

Nk(�)

N0
=
∑

k

Pk(�)

k
. (64)

The function Pk(�), defined by equation (63), is the probability that a cluster belong to
a k-island, while equation (64) can properly be referred to as the collision series. Apparently,
the next step will be to determine the Pk(�)′s. Let us proceed systematically. The origin of the
reference frame is located at the centre of a cluster randomly chosen out of the N0 equivalent
clusters of side l. The collision zone of this cluster, i.e. the region within which the centre of
one more cluster has to lie in order to collide with it, is the area enclosed in the square of side
2l, namely A1. Thus, the probability of having a single isolated cluster is given by

P1(�) = e−N0 A1 = e−4N0l2 = (1 − �)4. (65)

As far as the P2(�) evaluation is concerned we must require that, besides a dot at the
origin, a second dot lie in the area A1 at (x, y) within dx dy and that, concomitantly, no other
dots lie within the area A2(x, y), which is the union of the two collision zones (figure 12). In
addition, we have to integrate over the collision zone of the nucleus at the origin, i.e. the square
of side 2l; or, in other words, over all of the possible configurations of two connected clusters:

P2(�) =
∫

A1

e−N0 A2(x,y;�) N0 dx dy = 4N0l2
∫

A1

e−4N0l2 A2(ξ,η;�) dξ dη

= 4 ln

(
1

1 − �

)∫

A1

(1 − �)4A2(ξ,η;�) dξ dη, (66)

where dx dy = 4l2 dξ dη and we have retained the same symbol Ak after having changed the
coordinates. Equation (66) can be generalized to evaluate Pk(�) straightforwardly:

Pk(�) =
(

4 ln
1

1 − �

)k−1 k−1∏

j=1

∫

A j

(1 − �)4Ak ({ξ,η};�) dξ j dη j; (67)
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Figure 12. Pictorial view of an island made up of two nuclei located at (0, 0) and (x, y) respectively
(panel (a)). The collision zone of a single cluster is also shown in panel (a), whereas the area of
the island is evidenced in panel (b) (white area). Note that the collision area of the island is equal
to the union of the white and dashed areas.

the integral is performed over all distinct arrangements of the k connected clusters. Although
equation (67) settles formally the matter of the collision series, unfortunately it is also evident
that it soon becomes unmanageable. In particular, for k = 4, owing to the large number
of arrangements to take into account, it is already necessary to introduce an approximation.
Nevertheless, the comparison between the approximated G(�) up to k = 4 and a Monte Carlo
simulation demonstrates that the collision series is rapidly convergent and that its incomplete
analytical evaluation is a fairly acceptable approximation of the exact kinetics [49]. Moreover,
the latter perfectly fits a function of the following kind:

G(�) = e−a�−b�3
(68)

when a = 2.2, b = 5.22. The curve fit is also reported in figure 13.
As regards the coalescence, the reader will find a thoroughly analytical and numerical

study in [50]. Here we will just report a simple and only seemingly naive calculation [51].
Let us consider the probability that a square region of side z be not overlapped by clusters,

when these possess a side size equal to l; it is

P(z; �) = e−N0(z+l)2
. (69)
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Figure 13. Collision series, G(�), in the case of simultaneous nucleation of square nuclei randomly
distributed throughout the space. The kinetics refers to the impingement growth mechanism. The
Monte Carlo simulation of the film growth is shown as open symbols; the continuous line is the
best fit of equation (68) to the numerical kinetics.

Consequently, the mean side of this empty region, which is also the average value of the
edge-to-edge distance among islands, is

z̄(�) =
∫∞

0 z dP
∫ ∞

0 dP
= 1

P(0)

∫ ∞

0
P dz

= 1√
N0

1

1 − �

(
ln

1

1 − �

)1/2 ∫ ∞

0
(1 − �)(1+ζ )2

dζ, (70)

where ζ = z
l and l = 1√

N0
(ln 1

1−�
)

1
2 . In particular, as P(z; 0) = e−N0z2

, from equation (70) it
follows that

z̄(0) =
√

π

4N0
. (71)

The average side of the island when the fraction of covered surface is � and N is the number
of islands per unit area is

l(�) =
√

�

N
, (72)

while the distance between the centres of the islands, on the analogy of equation (71), can be
written as

d̄ =
√

π

4N
. (73)

Clearly z̄(�) = d̄ − l(�), and using equations (70), (72) and (73) we eventually obtain

N(�)

N0
=
(√

π
4 − √

�

W (�)

)2

, (74)

where

W (�) ≡ 1

1 − �

(
ln

1

1 − �

)1/2 ∫ ∞

0
(1 − �)(1+ζ )2

dζ.

In this calculation all of the islands have the same size whatever the value of �. It is a sort
of mean field coalescence and, strictly speaking, is not exactly a kinetics ruled by coalescence,
yet equation (74) works surprisingly well. As a matter of fact, we have performed many MC



R596 Topical Review

Figure 14. Comparison between the G(�) kinetics in the case of coalescence and impingement
growth mechanisms and for simultaneous nucleation. The full symbols refer to the impingement
case (curve 1) while open symbols refer to 2D (curve 2) and 3D (curve 3) island coalescence. (a)
Square and cube. (b) Circle and hemisphere.

simulations both in the case of impingement and in the case of coalescence. In figure 14 we
report one of the various computer outputs which shows that G(�)does not change moving from
coalescence to impingement [12], and equation (74) is in very remarkable agreement with the
numerical simulation as disclosed in figure 15 [51, 49]. In figure 16 we have reported also the
comparison between the theoretical calculation (numerical simulation) and the experimental
determination of N(�) obtained from the growth of diamond on an Si substrate [52]; the same
specimen is described in section 3.1. This case can be considered paradigmatic for growth
characterized by impingement. The good agreement between the data and the simulation
corroborates, once more, the Poissonian character of this kind of growth, where, it is worth
repeating, no diffusion of adspecies occurs.

The ‘universal’ scaling of the island density with respect to the growth mechanism already
discussed has been recently exploited for analysing experimental data obtained from the growth
of quaterthiophene films on silica substrate [53]. From the N(�) plot the authors were able to
evaluate the nucleation density at saturation, that is achieved at the beginning of the deposition
process (figure 17). It is worth noting that, in fact, such an analysis does not require atomic
resolution microscopy techniques, for it is based on measurements carried out over the entire
range of coverages.
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Figure 15. Island density versus surface coverage during simultaneous nucleation of thin film.
Continuous line: analytical model of the ‘mean field coalescence’, equation (74). Dots: numerical
solution in the case of square cluster growth ruled by the impingement mechanism.

Figure 16. Experimental data on CVD growth of diamond film. The density of diamond islands,
as a function of the surface coverage, is reported as open squares. In the same panel the kinetics of
island aggregation as computed through equation (68) is also reported as dotted line.

Figure 17. Behaviour of the island density as a function of fractional coverage, �, over the entire
range of coverages (0 < � < 1). Data refer to the growth of quaterthiophene thin films on silica
substrate.

4. Rate equations

The processes that are taken into account in the traditional mean field rate equation (RE)
approach [54] are the following: adsorption and desorption of monomers,diffusion of adatoms,
nucleation, island growth and impingement/coalescence of islands. In the RE a critical size,
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n∗, is assumed in such a way that nuclei with size larger than n∗ can only grow by monomer
addition. Detachment of monomers only involves sub-critical nuclei. The definition of a
sharp critical size is necessary for the closure of the system of RE; as a matter of fact in this
circumstance the system consists of n∗ + 1 equations, one being the equation for the number
density of stable nuclei: n = ∑

i>n∗ ni . The system is not linear in the surface densities and,
moreover, size dependent capture numbers σi , are defined representing the propensity of an
island to capture the available adatoms [55, 56].

The simplest application of the RE method has been proposed by Logan in [57] for the
case of stable dimers and total condensation of adatoms. By making use of dimensionless
variables for the time as well as for the surface densities of both monomers and dimers, the
numerical solution of the RE system is given in ‘universal’ form and can be employed for
studying the nucleation stage for different parameter values. However, in this article, as well
as in the majority of those dealing with RE, one studies only the early stage of film growth.
To be specific, as already stated in section 3.3, the collision process of islands has rarely been
treated, with the possible exception of [58] and [4], where the authors introduced a term which
accounts approximatively for the island collision:

(dN)coll = −2N d�. (75)

This term can be used for describing just the initial stage of the collisional regime. In fact,
to go further, up to � = 1 it is necessary to employ equation (64) which, in the limit
� → 0, coincides with equation (75). On the other hand, as far as the nucleation regime
is concerned, remarkable results have been achieving in describing experimental [59] and
computer simulation kinetics of the island density [13].

In the following we will dwell upon the issue of how to treat, over the whole coverage
region, film growth governed by adatom diffusion. As a consequence, nuclei are not distributed
at random throughout the substrate. The effect of this spatial correlation must be included in
both the adatom lifetime and the collision series, but this is exactly what we have developed
in the previous section.

We solve rate equations under the following assumptions: (i) total condensation of
monomers, that is monomer evaporation does not occur; (ii) dimers are the stable nuclei; (iii)
islands are two-dimensional; (iv) monomers landing on the islands contribute to the lateral
growth of the film. Under these hypotheses the rate equations read

dn1

dt
= F(1 − �) − n1

τ
dn

dt
= 1

2
G

n1

τn
− n

τc
,

(76)

where F is the gas flux of monomers, n1 is the number density of adatoms, n is the number of
islands, τc is the characteristic time for island collision and τ−1 = τ−1

n + τ−1
g , in which τn and

τg are the characteristic times for nucleation and island growth respectively. The term G is the
function introduced in section 3.3 (equation (64)). Equation (76) differs from the traditional
equations in that the characteristic times are functions of time and in the presence of G. This
deserves an explanation.

As evidenced in section 3.3 the function G takes into account the decay of the island
number due to collision among islands in the case of simultaneous nucleation. How do we
treat the case of non-simultaneous nucleation that is intrinsic to the rate equation scheme? A
convenient way to answer this question is to employ the following approximation:

n(�) = ν(�)G(�), (77)

where ν(�) stands for the number of nucleation events that occurred up to �; i.e. for each
coverage, the number of islands is given by the total number of nuclei (or clusters) weighted
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by the collision function. This implies that, at each coverage, all the clusters have the same
size. We have expressed the kinetics in terms of coverage, rather than time, because in this
case G results as independent of the collisional mechanism i.e. impingement, coalescence or
any intermediate case [12]. By taking the derivative of equation (77) we get

dn

dt
=
(

dν

dt
G + ν

dG

d�
�̇

)

= dν

dt
G + νG F

d ln G

d�

= dν

dt
G − n

τc
, (78)

where the approximation F ∼= �̇ has been used. This is an approximation since a fraction of
the flux results in admonomers. Equation (78) discloses the important result

1

τc(�)
= −F

d ln G(�)

d�
; (79)

i.e. a function of surface coverage: � = Ft − n1. Equation (78) coincides with the second
equation of equation (76). By writing the system in terms of coverage variable, we get

dn1

d�
= (1 − �) − n1

Fτ
dn

d�
= 1

2
G

n1

Fτn
− n

Fτc
,

(80)

where now the τ s are functions of �. As far as the characteristic time of growth is concerned,
it has been discussed in section 3.2. In particular, equation (57) must be used after having
changed the variable t with �. As usual, the characteristic time for nucleation can be taken as

1

τn(�)
= 2σ1 Dn1(1 − �̃), (81)

σ1 being the capture factor for the adatoms, D the diffusion coefficient and �̃ the fraction of
the substrate area in which nucleation is precluded because of the correlation among islands.
In order to test this model, for want of experimental data, we used kinetic Monte Carlo (KMC)
output from [60]. In figure 18 we show the G(�) obtained from equation (77) using n(�) and
ν(�) available from KMC output at D/F = 105. In the same figure also displayed are the fit
of the KMC derived data and the numerical Monte Carlo (MC) simulation with �∗ = 0.8. The
plots confirm what we have often underlined: that growth governed by adatom diffusion gives
rise, naturally, to spatially correlated nuclei/islands. In this specific case, MC simulation of
the G(�) kinetics is initially flat because of spatial correlation, which means that the clusters
do not collide up to �c = 0.2. In fact, since �∗ = Nl2

hc = 0.8 and because on average the
first collision takes place at lhc = 2lc, lc being the cluster side, we get �c = Nl2

c = �∗
4 = 0.2.

Moreover, the curve fit has been used in the numerical integration of the rate equations, which,
as stated above, describes a non-simultaneous nucleation process.

In figure 19 we show the comparison between the island density behaviours obtained
by KMC simulation and from rate equations [61]. In the same figure we also display the
kinetics in the case of Poissonian distribution of islands and employing equation (75) instead
of equation (64) to model the island collisions. As appears, the two main features of the
kinetics are well reproduced by rate equations only when the spatial correlation among nuclei
is considered: the maxima coincide and the tail correctly drops towards zero at large coverages.

Nevertheless, not only are rate equations successful for determining the island density
behaviour in the presence of spatial correlation, as we showed already, but also they allow one
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Figure 18. Collision series, G(�), for the simultaneous nucleation case. The full line and the
dotted line represent, respectively, the random and spatially correlated distribution of nuclei. The
Monte Carlo simulation of spatially correlated nuclei has been performed according to the hard
core model at S∗ = 0.8. The open symbols stand for the function obtained using the n(�) and
ν(�) functions available from the kinetic Monte Carlo simulation at D/F = 105 [60]. The dashed
line is the best fit of a stretched exponential to the KMC curve.

Figure 19. Number of islands, n, as a function of film thickness, �. The kinetics computed from
rate equations at D/F = 105 and p = 0.9 (full lines) are compared to the KMC outputs of [60]
(symbols), both for a random (curve a) and for a non-random (curve b) arrangement of nuclei. Rate
equations have also been integrated using the time constant 1

τc
= 2F . The result is displayed as a

dashed line.

to model the island size distribution function. To this end it is compulsory to take into account
correlation effects between the size of the island and the capture zone or VC (see also figure 1).
This has been done, for instance, in [7] where a method is proposed that is based on classical
mean field rate equations [54]. The core of the model is the evaluation of capture numbers. In
particular, rate equations have been formulated which give the evolution of the Voronoi cell
distribution of islands of size s: fs(A,�), A being the area of the capture zone. Thanks to a
mean field approximation the solution for the joint probability distribution fs(A,�) has been
computed analytically. Furthermore, on the basis of the Bales and Chrzan approach [13] the
local capture numbers, σ̃s(A), are also determined and with them the average capture numbers,
σs = 〈σ̃s(A)〉 fs (A), that enter in their rate equation scheme. It is shown that by using the σs s
the integration of rate equations leads to an excellent description of Monte Carlo results for
both island size and capture number distributions.

Interestingly for suitable choices of the rate coefficients, rate equations can also be
employed for dealing with correlation between island size and local environment. The model
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presented in [7] does not include the break-up of Voronoi cells when new islands are nucleated.
The latter process as well as the scaling properties of the joint probability distribution have
been thoroughly treated in [62].

It has to be noted that the papers dealing with the local environment correlation are confined
to the investigation of the pre-coalescence regime where collisions among islands can be, just
by reason of the nucleation forbidden zone, safely neglected, each island being associated with
a single nucleation event. In other words, while those approaches resolve in detail the early
stage regime (up to � � 0.2), the model reviewed here has been elaborated for describing
the kinetics up to the film closure. Clearly the analytical resolution of the rather demanding
latter requirement calls for approximations. For example, at odds with the approach of [7], our
model makes use of an average island capture number which depends, however, upon surface
coverage [45]:

σ(�) = 1

τ ′(�)G(�)
;

it is a combination of both adatom lifetime and collision series.
At the very end, a last citation is in order. It has been shown that the solutions of

rate equations in the pre-coalescence regime also exhibit scaling properties with respect to
the deposition and materials parameters. This has been shown analytically in [63] for the
behaviour of the island size distribution function and adatom density. The validity of the
scaling hypothesis in the case of reversible aggregation has been discussed in [64] on the basis
of MC simulations.

5. Conclusions

In this article we have reviewed some aspects related to the modelling of thin film growth
kinetics through stochastic processes of dots. The approach presented here is based on the
integration of rate equations which, very often, have been used in the low coverage regime
and for random distribution of nuclei. To extend this approach to the full range of coverage
and to the case of spatially correlated nuclei, it is compulsory to elaborate a model for the
characteristic times, such that it could be easily used in a rate equation scheme. The key
point is that, by exploiting the growth law of the average cluster, the main ingredients of rate
equations are two quantities: G(�; �∗) and τ (�; �∗). The computation can be worked out,
analytically, on the basis of a stochastic approach in which the fundamental role is played by
the exclusion probability.
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Appendix A

The mean value of N , as defined in equation (2), can be evaluated as follows:

〈N〉 =
∞∑

s=1

1

s!

∫
dxs Ns (x1, . . . , xs)Qs(x1, . . . , xs)

=
∞∑

s=1

1

s!

∫
dxs

s∑

k=1

χ(xk)Qs(x1, . . . , xs)
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=
∞∑

s=1

1

s!

s∑

k=1

∫

�

dxk

∫
dxs−1 Qs(x1, . . . , xs)

=
∞∑

s=1

1

(s − 1)!

∫

�

dx1

∫
dxs−1 Qs(x1, . . . , xs), (83)

where in shorthand notation dxs ≡ dx1 dx2 . . . dxs and the last step exploits the symmetry of
the Qs s. By the same token it is possible to show that

〈
N2〉 = 〈N〉 +

∞∑

s=2

1

(s − 2)!

∫

�

dx1

∫

�

dx2

∫
dxs−2 Qs(x1, . . . xs). (84)

On the basis of (83) and (84) the following functions can be introduced:

f1(y1) =
∞∑

s=1

1

(s − 1)!

∫
dxs−1 Qs(y1, x2, . . . , xs)

f2(y1, y2) =
∞∑

s=2

1

(s − 2)!

∫
dxs−2 Qs(y1, y2, x3, . . . , xs)

. . . . . . . . . . . . . . . . . . . . . . . .

fn(y1, . . . , yn) =
∞∑

s=n

1

(s − n)!

∫
dxs−n Qs(y1, y2, . . . , yn, xn+1 . . . , xs), (85)

which allow one to rewrite (83) and (84) as (3) and (4).

Appendix B

The mean values of the generic function V defined in equation (6) are quickly evaluated as
follows:

〈V 〉 =
∞∑

s=1

1

s!

∫
dxs Qs(x1, . . . , xs)

s∑

k=1

v(xk)

=
∞∑

s=1

1

(s − 1)!

∫
dxs Qs(x1, . . . , xs)v(x1)

=
∫

dx1 v(x1) f1(x1)

〈
V 2〉 =

∞∑

s=1

1

s!

∫
dxs Qs(x1, . . . , xs)

s∑

ν=1

v(xν)

s∑

µ=1

v(xµ)

=
∞∑

s=1

1

s!

∫
dxs Qs

[
s∑

µ=1

v2(xµ) + 2
s∑

µ<ν

v(xµ)v(xν)

]

=
∞∑

s=1

1

(s − 1)!

∫
dxs Qsv(x1) +

∞∑

s=2

1

(s − 2)!

∫
dxs Qsv(x1)v(x2)

=
∫

dx1 v2(x1) f1(x1) +
∫

dx1 dx2 v(x1)v(x2) f2(x1, x2). (86)
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Appendix C

The average of V (1) reads

〈
V (1)

〉
{1} =

∑

{1}

∑

s

∑

�s
{1}

1

ni !

∫
Q(1)

π s
i

∑

〈1〉
vi dxs

=
∑

{1}

∑

s

∑

�s
{1}

1

(ni − 1)!

∫
vi dxi

∫
Q(1)

π s
i

dxs−1

=
∑

{1}

∫
vi hi dx1 =

∑

{1}
(vi hi ), (87)

where we have introduced the function

hi (x1) ≡
∑

s

∑

�s
{1}

1

(ni − 1)!

∫
Q(1)

π s
i

dxs−1. (88)

Similarly we obtain
〈
V (2)

〉
{2} =

∑

{1}

∑

{1}\i

(vi hi, j ) (89)

〈
V (3)

〉
{3} =

∑

{1}

∑

{2}\i

(vi hi, jk), (90)

where

hi, j (x1) ≡
∑

s

∑

�s
{2}

1

(ni − 1)!n j !

∫
Q(2)

π s
i j

dxni−1
i dxn j

j , (91)

hi, jk(x1) ≡
∑

s

∑

�s
{3}

1

(ni − 1)!n j !nk!

∫
Q(3)

π s
i j k

dxni−1
i dxn j

j dxnk
k (92)

and the symbol {m}\i means that all the m-tuples are considered that do not contain the i -class.
In addition, the f -function of any specific class can be defined as

fi ≡ hi +
∑

{1}\i

hi, j +
∑

{2}\i

hi, jk +
∑

{3}\i

hi, jkl + · · · (93)

and

fi j ≡ hi j +
∑

{1}\i, j

hi j,k + · · · (94)

where

hi j,k ≡
∑

s

∑

�s
{3}

1

(ni − 1)!(n j − 1)!nk!

∫
Q(3)

π s
i j k

dxni−1
i dxn j−1

j dxnk
k . (95)

Appendix D

We will show the equivalence between equations (30) and (31) just for the case s = 3; for the
others the reader can proceed in a like manner. From equation (30) it follows that

A =
∑

m

∑

{m}

∑

�s
{m}

∫
�1

dx
n3

1
1 . . .

∫
�m

dxn3
m

m g3

n1! . . . nm!



R604 Topical Review

=
∑

{1}

∑

�3
{1}

1

n1!

∫

�1

dx
n3

1
1 g3 +

∑

{2}

∑

�3
{2}

1

n1!n2!

∫

�1

dx
n3

1
1

∫

�2

dx
n3

2
2 g3

+
∑

{3}

∑

�3
{3}

1

n1!n2!n3!

∫

�1

dx
n3

1
1

∫

�2

dx
n3

2
2

∫

�3

dx
n3

3
3 g3

=
∑

{1}

1

3!

∫

�i

dx(i)
1 dx(i)

2 dx(i)
3 g3(x

(i)
1 , x(i)

2 , x(i)
3 )

+
∑

{2}

1

2!1!

∫

�i

dx(i)
1 dx(i)

2

∫

� j

dx( j)
1 g3(x

(i)
1 , x(i)

2 , x( j)
1 )

+
∑

{2}

1

1!2!

∫

�i

dx(i)
1

∫

� j

dx( j)
1 dx( j)

2 g3(x
(i)
1 , x( j)

1 , x( j)
2 )

+
∑

{3}

1

1!1!1!

∫

�i

dx(i)
1

∫

� j

dx( j)
1

∫

�k

dx(k)

1 g3(x
(i)
1 , x( j)

1 , x(k)

1 ),

and from equation (31)

B = 1

3!

∑

i

∑

j

∑

k

ρiρ jρk

∫

�i

dx(i)
1

∫

� j

dx( j)
1

∫

�k

dx(k)

1 g̃3

= 1

3!

[
∑

{1}
ρ3

i

∫

�i

dx(i)
1 dx(i)

2 dx(i)
3 g̃3(x

(i)
1 , x(i)

2 , x(i)
3 )

+ 3
∑

{2}
ρ2

i ρ j

∫

�i

dx(i)
1 dx(i)

2

∫

� j

dx( j)
1 g̃3(x

(i)
1 , x(i)

2 , x( j)
1 )

+ 3
∑

{2}
ρiρ

2
j

∫

�i

dx(i)
1

∫

� j

dx( j)
1 dx( j)

2 g̃3(x
(i)
1 , x( j)

1 , x( j)
2 )

+
∑

{3}
ρiρ jρk

∫

�i

dx(i)
1

∫

� j

dx( j)
1

∫

�k

dx(k)

1 g̃3(x
(i)
1 , x( j)

1 , x(k)

1 )

]
.

So, because of equation (32), we get

A = B. (96)
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